

LA-UR-18-28725

Approved for public release; distribution is unlimited.

Title: Polymer Equations of State and Shock-Driven Decomposition

Author(s): Coe, Joshua Damon

Peterson, Jeffrey Hammett

Intended for: JANNAF 2018 Technical Information Meeting, 2018-09-17 (Arlington,

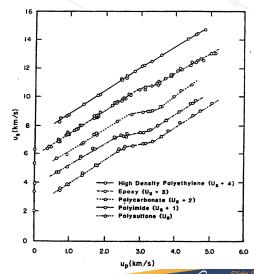
Virginia, United States)

Issued: 2018-11-20 (rev.2)

Polymer Equations of State and Shock-Driven Decomposition

Josh Coe
Physics & Chemistry of Materials (T-1)
Los Alamos National Laboratory

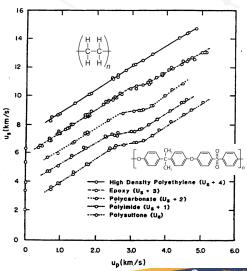
November 14, 2018


Quick Outline

- Polymers decompose under shock loading
 - Experimental evidence
- EOS Modeling approaches
 - SESAME
 - Thermochemical
- Detailed application to foams: polyurethane
- Some hydrodynamic implications of EOS choices: epoxy
- Adding kinetics: polysulfone

Polymer Hugoniots Display Structure

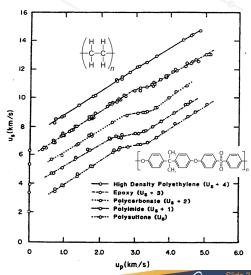
- Derivative discontinuities at $u_p \sim 3$ km/s (typically P ~ 25 GPa)
- Volume collapse in P-V


LA-13006-MS, LANL (originally prepared in 1977)

Polymer Hugoniots Display Structure

- Derivative discontinuities at $u_p \sim 3$ km/s (typically P ~ 25 GPa)
- Volume collapse in P-V
 - Degree of collapse correlates qualitatively with chemical structure

LA-13006-MS, LANL (originally prepared in 1977)


UNCLASSIFIED

Polymer Hugoniots Display Structure

- Derivative discontinuities at $u_p \sim 3$ km/s (typically P ~ 25 GPa)
- Volume collapse in P-V
 - Degree of collapse correlates qualitatively with chemical structure
 - Interesting and important stuff at lower u_p , won't discuss

LA-13006-MS, LANL (originally prepared in 1977)

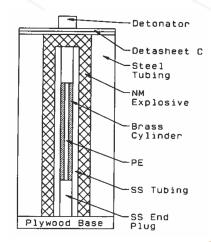
UNCLASSIFIED

Hugoniot Structure: Two Early Views

- Phase transition (LANL, 1977)
 - analogous to graphite→diamond
 - "compression...is two-dimensional in nature" below the transition,
 "more typical of a three-dimensional solid" above

Hugoniot Structure: Two Early Views

- Phase transition (LANL, 1977)
 - analogous to graphite→diamond
 - "compression...is two-dimensional in nature" below the transition, "more typical of a three-dimensional solid" above
- Decomposition (LLNL, 1979)
 - "..hydrocarbons at high pressure (\gtrsim 10 GPa) and high temperature (\gtrsim 1000 K) dissociate into carbon in the diamond phase and hydrogen in a condensed molecular phase"



Hugoniot Structure: Recovery Experiments

- Experiments on polyethylene and Teflon
- Setup
 - Single-shock, Mach compression
 - Hermetically-sealed capsule
 - Enabled recovery of soot and gases
 - Mass spectrometry, XRD, TEM

PE: SCCM-1989, p. 687; PTFE: J. Chem. Phys. 80, 5203 (1984)

Hugoniot Structure: Recovery Experiments

- Experiments on polyethylene and Teflon
- Setup
 - Single-shock, Mach compression
 - Hermetically-sealed capsule
 - Enabled recovery of soot and gases
 - Mass spectrometry, XRD, TEM
- Polyethylene results
 - Polymer recovered at ~20 GPa
 - Gases and soot recovered 28-40 GPa
 - Gases were >80% mol CH₄ and H₂
 - Soot was neither graphite nor diamond

Detonator -Detasheet C -Steel Tubina NM Explosive Brass Cylinder SS Tubing SS End Plywood Base Plug

PE: SCCM-1989, p. 687; PTFE: J. Chem. Phys. 80, 5203 (1984)

Unreactive EOS: SESAME Framework

- Purely hydrostatic, no strength or viscoelasticity
- 3-part decomposition of free energy

$$F(\rho, T) = \phi(\rho) + F_{\text{ion}}(\rho, T) + F_{\text{elec}}(\rho, T)$$

Methods to incorporate equilibrium phase boundaries

Unreactive EOS: SESAME Framework

- Purely hydrostatic, no strength or viscoelasticity
- 3-part decomposition of free energy

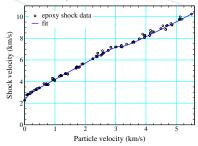
$$F(\rho, T) = \phi(\rho) + F_{\text{ion}}(\rho, T) + F_{\text{elec}}(\rho, T)$$

- Methods to incorporate equilibrium phase boundaries
- We apply this to just about everything
 - High explosive products being the exception

Unreactive EOS: SESAME Framework

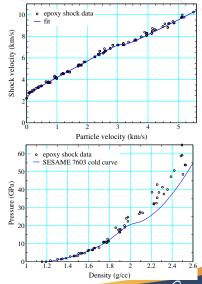
- Purely hydrostatic, no strength or viscoelasticity
- 3-part decomposition of free energy

$$F(\rho, T) = \phi(\rho) + F_{\text{ion}}(\rho, T) + F_{\text{elec}}(\rho, T)$$


- Methods to incorporate equilibrium phase boundaries
- We apply this to just about everything
 - High explosive products being the exception
- With regards to polymers:
 - Electronic part not that important $\rho/\rho_0 \lesssim 3$
 - Ionic models of Mie-Grüneisen form (variations on Debye)
 - Cold curve extracted from fit to shock data

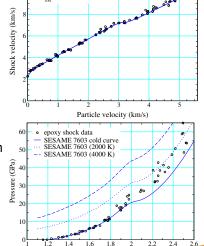
Our Traditional Approach to Polymer EOS

Fit some shock data



Our Traditional Approach to Polymer EOS

- Fit some shock data
- Assume some characteristic temperature
 - Cold curve by subtraction

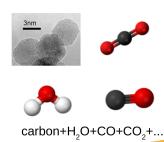


Our Traditional Approach to Polymer EOS

- Fit some shock data
- Assume some characteristic temperature
 - Cold curve by subtraction
- Potential problems:
 - Structure present even at 0K
 - Structure preserved to high T
 - Completely reversible transition
- Thermals often poorly constrained
 - Important for foams

Density (g/cc)

epoxy shock data



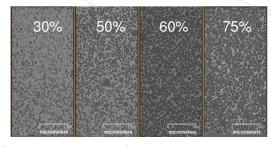
Thermochemical Modeling

- Decomposition products as mixture of fluids and bulk solids
 - Each constituent has its own free energy model
 - Fluids: spherical, pairwise interaction potential translated to free energy with perturbation theory
 - Solids: SESAME model
 - Mixture rule required (non-unique)

Thermochemical Modeling

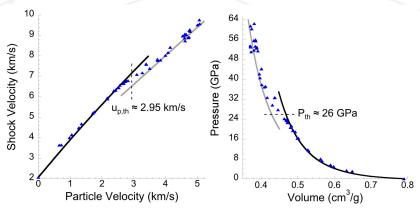
- Decomposition products as mixture of fluids and bulk solids
 - Each constituent has its own free energy model
 - Fluids: spherical, pairwise interaction potential translated to free energy with perturbation theory
 - Solids: SESAME model
 - Mixture rule required (non-unique)
- Assume full thermodynamic (and thus, chemical) equilibrium
 - Adjust concentrations until minimal free energy found and stoichiometry preserved

carbon+H2O+CO+CO2+...



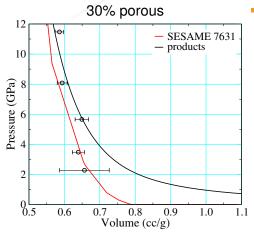
PMDI Polyurethane: Approach

- Shock data for polyurethane at 0-75% porosity
- Thermochemical modeling above some threshold
 - Threshold varies with porosity, unknown a priori
 - Carbon as diamond for full density, as graphite for foams
 - Only adjustable parameter is E₀
- Reactants were SESAME + $P \alpha$ porosity model
 - Only porous parameter is crush pressure, P_c


Dattelbaum, et al., J. Appl. Phys. 115, 174908 (2014)

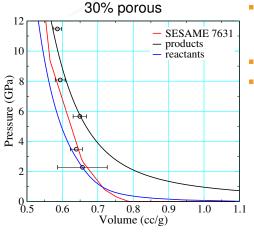
UNCLASSIFIED

PMDI Polyurethane: Full Density Results

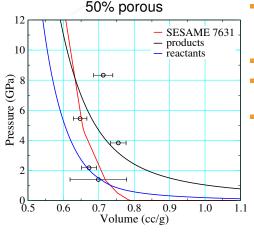

- E₀ of products adjusted to match data above transition
- Reactant EOS calibrated to all solid data
- Legacy EOS SESAME 7631 (shown in following)

Dattelbaum, et al., J. Appl. Phys. 115, 174908 (2014)

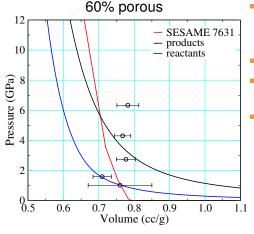
UNCLASSIFIED

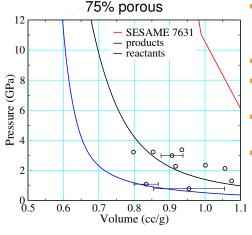

- Porous E_0 same as for solid
 - Good agreement with highest points

Dattelbaum, et al., *J. Chem. Phys.* **115**, 174908 (2014)

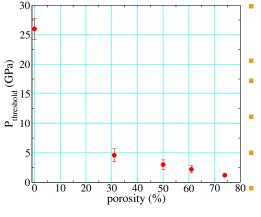

- Porous E_0 same as for solid
 - Good agreement with highest points
- Set P_c =16 kbar
- Yields product locus to right of reactants

Dattelbaum, et al., *J. Chem. Phys.* **115**, 174908 (2014)


- Porous E_0 same as for solid
 - Good agreement with highest points
- Set P_c =16 kbar
- Yields product locus to right of reactants
- Experimental error bars should probably be larger



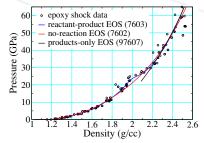
- Porous E_0 same as for solid
 - Good agreement with highest points
- Set P_c =16 kbar
- Yields product locus to right of reactants
- Experimental error bars should probably be larger



- Porous E_0 same as for solid
 - Good agreement with highest points
- Set P_c =16 kbar
- Yields product locus to right of reactants
- Experimental error bars should probably be larger
 - Approach makes qualitative sense of the pattern

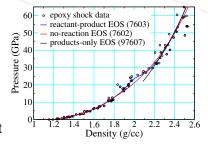
Dattelbaum, et al., J. Chem. Phys. 115, 174908 (2014)

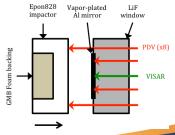
Porous E_0 same as for solid


- Good agreement with highest points
- Set P_c =16 kbar
- Yields product locus to right of reactants
- Experimental error bars should probably be larger
- Approach makes qualitative sense of the pattern
 - Transition threshold drops dramatically with porosity

Hydrodynamic Implications: Shock and Deep Release

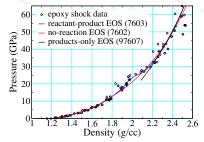
- Fredenburg TITANS thesis (LA-CP-16-06822)
- New products EOS 97607
- Historical EOS
 - 7603 includes structure in fit
 - 7602 excludes structure from fit

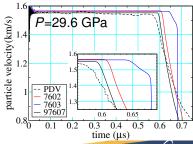




Hydrodynamic Implications: Shock and Deep Release

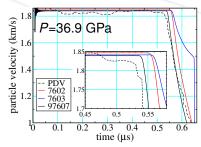
- Fredenburg TITANS thesis (LA-CP-16-06822)
- New products EOS 97607
- Historical EOS
 - 7603 includes structure in fit
 - 7602 excludes structure from fit
- Release experiment gives P and its first two ρ derivatives (c_S² and G)





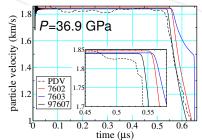
Hydrodynamic Implications: Shock and Deep Release

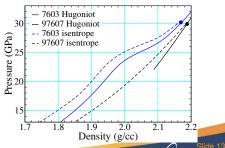
- Fredenburg TITANS thesis (LA-CP-16-06822)
- New products EOS 97607
- Historical EOS
 - 7603 includes structure in fit
 - 7602 excludes structure from fit
- Release experiment gives P and its first two ρ derivatives (c_S² and G)
 - Products give better c_S (8% error vs. 16% and 29%)
 - G ok, better for higher P
 - multiwave structure from 7603



UNCLASSIFIED

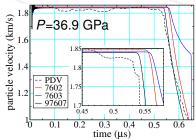
Reversible Transitions and Structured Release

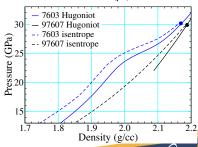




Reversible Transitions and Structured Release

- Hugoniot structure appears also in the isentropes
 - Release produces spurious "back-reaction"
- Multiwave structure results
- Reversibility issue
 - Should we treat polymers more like HE, or metals?





Reversible Transitions and Structured Release

- Hugoniot structure appears also in the isentropes
 - Release produces spurious "back-reaction"
 - Multiwave structure results
- Reversibility issue
 - Should we treat polymers more like HE, or metals?
- When do we clearly not care?
 - Shocks below transition
 - Shocks well above transition
- Relevance dictated by strength of shock and timescale of interest

Adding Kinetics

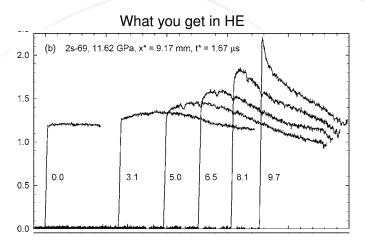
- Using HE burn module in LANL's xRage code
- So far we've only tried an Arrhenius rate

$$\mathcal{R} = \frac{d\lambda}{dt} = (1 - \lambda)^n \nu e^{(-T_a/T)}$$

 $\mathcal{R} = \text{reaction rate}$

 $\lambda = \text{mass fraction of products}$

n = reaction order (parameter)

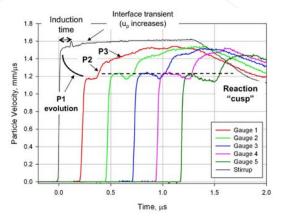

 $\nu =$ frequency factor (parameter)

 T_a = activation temperature (parameter)

Rate Model Calibration: Data

Embedded gauge data for PBX 9502

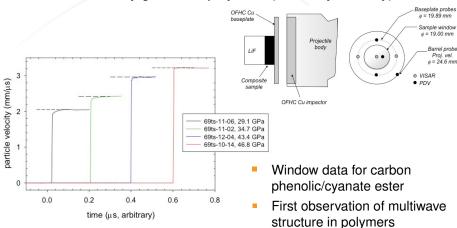
Gustavsen, et al., J. Appl. Phys. 99, 114907 (2006)


UNCLASSIFIED

Rate Model Calibration: Data

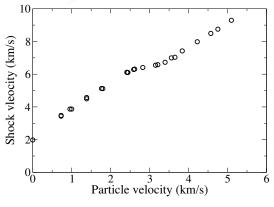
What we'd like to get for polymers...

Embedded gauge data for phenylacetylene liquid


Dattelbaum & Sheffield, AIP Conf. Proc. 1426, 627 (2012)

Rate Model Calibration: Data

What we'd actually gotten for polymers (until very recently)...

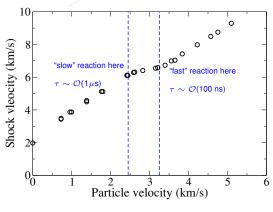

Dattelbaum, et al., *J. Appl. Phys.* **116**, 194308 (2014)

Rate Model Calibration: Data

What we usually have for polymers...

Polysulfone shock data:

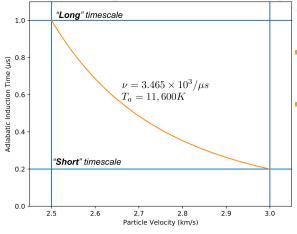
- Shock velocity from transit time (first wave arrival only)
- Particle velocity from impedance matching


Carter & Marsh, LA-13006-MS (1995)

Rate Model Calibration: Data

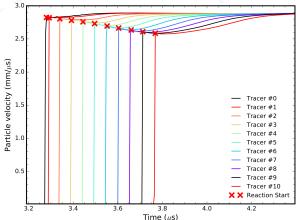
What we usually have for polymers...

Polysulfone shock data:


- Shock velocity from transit time (first wave arrival only)
- Particle velocity from impedance matching

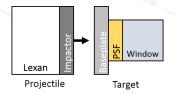
Carter & Marsh, LA-13006-MS (1995)

Rate Model Calibration: Practice


- Using 1/(adiabatic induction time) as proxy for rate
- For a given pair of EOS:
 - T_a sets u_p range
 - ν shifts laterally

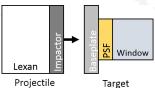
Simulated Wave Profiles in Polysulfone

• P_{input} =22.1 GPa; transition starts \sim 18.5 GPa


Qualitative features good, but experimental reaction signatures (P1 decay, P2 rise) much more subtle

Top Hat Experiments on Polysulfone

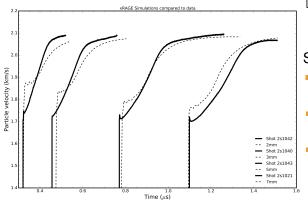
PDV at (reshock) interface with window

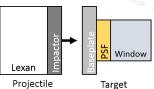


Top Hat Experiments on Polysulfone

PDV at (reshock) interface with window increasing sample thickness →

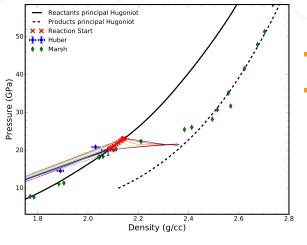
Time (µs)





Top Hat Experiments on Polysulfone

PDV at (reshock) interface with window increasing sample thickness \rightarrow



Simulation:

- underestimates total P1 decay
- exaggerates P1 variation with thickness
- P2 slow when thin, fast when thick

"Reaction Path" in Polysulfone

- P1 states relax along reactant Hugoniot
- All tracers ride P2 to products Hugoniot

Summary & Future Directions

- Polymers decompose under shock loading
 - $-u_p\sim 3$ km/s, $P\sim 25$ GPa at full density
- Threshold conditions drop dramatically as porosity increases
 - Response may become anomalous
- Products modeled reasonably well under assumption of full thermodynamic equilibrium
- Treating reactants and products as single material can produce artifacts in hydrodynamic simulation
- Ongoing
 - Understanding the interaction of chemistry and flow
 - Work on polyethylene, polysulfone, SX358, polyimide...

UNCLASSIFIED

Extra Slides

Thermicity coefficients and detonability

 In order to produce a self-sustaining wave, a material must have a positive thermicity coefficient

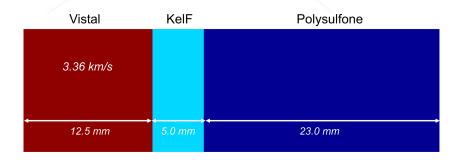
$$\sigma = \left(\frac{\partial P}{\partial \lambda}\right)_{V,E} = \frac{\Delta V}{V} - \frac{\Gamma}{c^2} \Delta H$$

 $\sigma = \text{thermicity coefficient}$

 $\lambda = {\sf reaction\ progress\ variable}$

 $\Gamma = Gr\ddot{u}$ neisen parameter

c = frozen sound speed


 $\Delta H = \text{enthalpy (confusingly, also called reaction thermicity)}$

Exothermic decomposition does not guarantee detonation

Setup for wave profile run

Rate Model Calibration: Theory

Adiabatic induction time for constant-volume burn

$$t_{ad}(T_0) = \frac{T_0^2}{\nu T_a(T_1 - T_0)} e^{(T_a/T_0)}$$

 T_0 = reactant temperature

 T_1 = product temperature

 $\nu =$ frequency factor (parameter)

 T_a = activation temperature (parameter)

- In our case, these are Hugoniot temperatures
- There's a problem when reaction lowers temperature
- Because $T_0 = T_0(u_p)$, we'll consider $t_{ad}(u_p)$

R. Menikoff, LA-UR-17-31024 (2017)

